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1.1 Trapezoid Rule

Definition 1: Trapezoid Rule

We do the following steps.

1. Dividing the interval [a, b] into subintervals [xi, xi+1], i = 0, · · · , n, according to
the partition P = {a = x0 ≤ x1 · · · ≤ xn = b}.

2. Estimated the total area
∫ b

a
f(x)dx by 1

2

∑n−1
i=0 (xi+1 − xi)[f(xi) + f(xi+1)].

Example 1. Let’s use the Trapezoid Method to estimate f(x) = x2 on [0,2]. With the
following partitions: P1 = [0, 1, 2], P2 = [0, 0.5, 1, 1.5, 2]. We get for P1:

8

3
=

∫ b

a

f(x)dx ≈ 0.5[(1− 0)(f(1) + f(0)) + (2− 1)(f(2) + f(1))] = 3

We get for P2:

8

3
=

∫ b

a

f(x)dx ≈ 0.5[(0.5)(0.25) + (0.5)(1.25)) + (0.5)(3.25) + (0.5)(6.25)] = 2.75

The error when using P1 is 1
3
. The error when using P2 is about 0.083. For a simple

function that we can graph, we can actually pick a non-uniform partition to improve the
error. For more examples, please see the lecture notes and the reference book.

1.2 How to control the error by making the partition fine enough

Indeed we can pick the partition as “fine” as possible to obtain the “most accurate” answer.
However, to save time and resources, what is the minimum number of points required to
achieve a given level of accuracy? This is answered by the following theorem.

Theorem 1: Theorem On Precision Of Trapezoid Rule

If f ′′ exists and is continuous on the interval [a, b] and if the composite trapezoid rule

T with uniform spacing h is used to estimate the integral I =
∫ b

a
f(x)dx, then for

some ζ in (a, b),

I − T = − 1

12
(b− a)h2f ′′(ζ)

Example 2. Compute
∫ 1

0
e−x2

dx with an error of at most 1
2
× 10−4. How many points

should be used?
First, we check that f ′′ indeed exists and is continuous on [0, 1]. This is true since

f ′′(x) = (4x2 − 2)e−x2

.

Also, we estimate f ′′ by

|f ′′(x)| = |(4x2 − 2)e−x2| ≤ |(4x2 − 2)| ≤ 2.
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(How to estimate f ′′?) Since f ′′ exists and is continuous. We can use the previous theorem.
The error is given by

|I − T | =
∣∣∣∣−1− 0

12
h2f ′′(ζ)

∣∣∣∣ want

≤ 1

2
× 10−4

That is, ∣∣∣∣16h2

∣∣∣∣ want

≤ 1

2
× 10−4

So we can pick h ≤ 0.01732. Since we are using uniform spacing, and h = b−a
number of points−1

.
So we need the number of points > 58. Thus we pick 59 or more points.
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2 Jan 18, 2023

2.1 More example on Error Analysis

• For a partition P = {a = x0 ≤ x1 · · · ≤ xn = b}, there are n intervals.

• There are totally n+ 1 of points which includes x0.

• The step size for uniform partition is b−a
n
.

To make sure that h = b−a
n
. Let me give a short proof here to convince you all.

Lemma 1: G

ven a uniform partition P = {a = x0 ≤ x1 · · · ≤ xn = b}, the step size h is given by,

h =
b− a

number of intervals
=

b− a

n
(1)

Proof. Let’s prove this by induction. (1) is obviously true when n = 1. Suppose (1) is
true for n = k. When n = k + 1, we have added one more point. Then we have one more
interval, thus the step size is h = b−a

k+1
.

Example 3. How many points are needed to estimate∫ 2

1

x lnx dx (2)

with an error of at most 10−3?
We compute f ′′ with f(x) = x lnx. We get

f ′′ =
1

x
. (3)

So f ′′ exists and is continuous on [1, 2]. Next we get |f ′′| ≤ 1. By the Theorem On Precision
Of Trapezoid Rule, we have, for some ζ ∈ (1, 2),

|I − T | = |−1

12
(b− a)h2f ′′(ζ)| ≤ 1

12
h2

want

≤ 10−3 (4)

Thus we get h ≤ 0.109545.
The relationship between the number of points and the step size is,

h =
b− a

n
. (5)

Thus n ≥ 9.1286. So we need n = 10. But what is n? Looking at how we constructed the
partition,

P = {2 = x0 ≤ x1 · · · ≤ x10 = 2}. (6)

So, for n = 10 we have in fact 11 points! Thus we need at least 10 points. I hope this
explains better why we have calculated n ≥ 58 but we need 59 points in the last discussion.
The extra point is the x0.
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2.2 Recursive Trapezoid Formula

Suppose you have two customers Anya and Loid. Anya might want to have an error of
10−3. Loid might want to have an error of at most 10−10. You might realize that if you use
the above partition, you would need to recompute the values of the function that we are
integrating specifically for Anya and Loid. It would be time-consuming to do that. But
you are so smart and you notice that Anya and Loid did not state that they want to use a
certain partition. Thus you can pick some partitions smartly that can minimize your work.

This is done by picking a uniform partition with h = 2N . This can be seen by just draw-
ing some pictures yourself, or you can look at Prof. Chen’s Lecture notes. The set of points
from the partition with h = 2N is a subset of the set of points from the partition with
h = 2N+1 for all N .

Let us denote the uniform partition with h = 2N , then

R(n, 0) = h

2N−1∑
i=1

f(a+ ih) +
h

2
[f(a) + f(b)]. (7)

Actually, we have

R(n, 0)− 1

2
R(n− 1, 0) = h

2N−1∑
k=1

f [a+ (2k − 1)h]. (8)

You can read more from the reference book to see how we get (8).
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3 Jan 25, 2023

3.1 Deriving the Recursive Trapezoid Formula

If we have P with n intervals and a function f . The formula of the composite trapezoid
rule gives

T (f ;P ) =
h

2
[f(a) + f(b)] + h

n−1∑
i=1

f(xi). (9)

Since xi = x0 + ih = a+ ih, where h is the step size. So we have

T (f ;P ) =
h

2
[f(a) + f(b)] + h

n−1∑
i=1

f(a+ ih). (10)

In view of the uniform partition P of with 2n equal intervals, h = b−a
2n

. The formula of the
composite trapezoid rule becomes

T (f ;P ) =
h

2
[f(a) + f(b)] + h

2n−1∑
i=1

f(a+ ih). We have
replaced
n by 2n.

(11)

Let us follow the notation used in the reference book and let

R(n, 0) := T (f ;P ) =
h

2
[f(a) + f(b)] + h

2n−1∑
i=1

f(a+ ih). The
notation
A := B
means A
is defined
to be B.

(12)

Next our goal is to do some computation and hopefully arrived at an expression like
R(n, 0) = somethings that depends on R(n−1, 0). First, let’s observe the obvious identity,

R(n, 0) = R(n, 0) +
1

2
R(n− 1, 0)− 1

2
R(n− 1, 0)

=
1

2
R(n− 1, 0) +

[
R(n, 0)− 1

2
R(n− 1, 0)

]
.

(13)

Let C := h
2
[f(a) + f(b)]. From (12), we have

R(n, 0) = C + h
2n−1∑
i=1

f(a+ ih)

R(n− 1, 0) = 2C + 2h
2n−1−1∑
j=1

f(a+ jh).

(14)

Note that in (14), there are 2n intervals in R(n, 0) and there are 2n−1 intervals in R(n−1, 0).
Also, if the step size for R(n, 0) is h. Then the step size for R(n− 1, 0) is 2h.

From (14) we have

R(n, 0)− 1

2
R(n− 1, 0) = C + h

2n−1∑
i=1

f(a+ ih)−

(
C + h

2n−1−1∑
j=1

f(a+ jh)

)

= h
2n−1∑
i=1

f(a+ ih)− h
2n−1−1∑
j=1

f(a+ jh).

(15)
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We need to be careful when computing this sum. Notice that the indices are different in the
first sum and the second sum. (The first sum depends on i, and the second sum depends
on j.) Let us observe a fact about partition with 2n steps here,

The points in the partition with 2N−1 steps are the even points in
the partition with 2N steps.

Proof. Consider any n. Let’s us denote the points in the partition PN−1 with 2N−1 intervals
by xj, 1 ≤ j ≤ 2N−1. Denote the points in in the partition PN with 2N intervals by yi,
1 ≤ i ≤ 2N . Picking any point xp, then by the way that we construct the partition, it is
obvious that xp remains in PN . Then for some integer k, there will be two points, yk and
yk+2, both are not in PN−1, such that

yk−1 < xp = yk < yk+1. (16)

Now I claim that k is even. If k is not even, then k − 1 is even. By this argument, we see
that all points in PN−1 will be the odd points in PN . However x0 is the even point that is
both in PN−1 and PN . Thus k must be even.

With this observation, we can compute,

R(n, 0)− 1

2
R(n− 1, 0) = C + h

2n−1∑
i=1

f(a+ ih)−

(
C + h

2n−1−1∑
j=1

f(a+ jh)

)

= h
2n−1∑
i=1

f(a+ ih)− h
2n−1−1∑
j=1

f(a+ jh)

= h
2n−1∑
i=1

i is odd

f(a+ ih). Becuase
all the
even
points are
canceled
out by
the
second
sum.

(17)

And this gives rise to the formula in the lectures and the book.

3.2 Romberg Algorithm

Romberg Algorithm is a combination of recursive trapezoid formula and extrapolation. We
have seen the recursive trapezoid formula before. The extrapolation formula is

R(n,m) = R(n,m− 1) +
1

4m − 1
[R(n,m− 1)−R(n− 1,m− 1)] . (18)

Perhaps a picture shows this formula better,

R(n− 1,m− 1)
R(n,m− 1) R(n,m)

(19)

R(n,m) is calculated with the values on the left shown above.

3.3 Simpson’s Rules

Simpson’s Rules is built on top of the observation that, we are using a straight line to
estimate the curve between f(a) and f(b) define by the function f . We can add more
points/ use a curve to do the estimation to improve our result.
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Let’s look at the Trap rule. For one interval, it has the form∫ b

a

f(x) dx ≈ h

2
[f(a) + f(b)] . (20)

This suggest that we can look for new integration rule of the following sense,∫ b

a

f(x) dx ≈ Af(a) +Bf(b), (21)

for some constant A and B. By this argument, for two intervals we have,∫ b

a

f(x) dx ≈ Af(a) +Bf(
a+ b

2
) + Cf(b) (22)

What is the general form for n-intervals like this?

How do we decide what are A,B,C? I am aware of two ways. First we can try to
formulate finding A,B,C as an optimization problem that minimize some kind of error.
Second way is to consider some kind of “toy problems” and make sure A,B,C gives the
correct result for the “toy problems’.
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4 Feb 1, 2023

4.1 Simpson’s Rules

Definition 2: T

e basic Simpson’s Rule is defined as follows∫ b

a

f(x) dx ≈ 1

6
(b− a)

[
f(a) + 4f(

a+ b

2
) + f(b)

]
. (23)

Example 4. Find approximate values for the integral∫ 1

0

e−x2

dx (24)

using the basic Simpson’s Rule. Carry five significant digits.

Solution: We can just apply the formula directly. From (23), we have∫ 1

0

e−x2

dx ≈ 1

6

[
e0 + 4f(e−0.25) + e−1

]
≈ 0.7472. (25)

The actual answer for this integral is approximately 0.74682.

Example 5. Show that the basic Simpson’s Rules integrate polynomial of degree at most
two correctly on [−1, 1].

Solution: We first consider integrating on the interval [−1, 1] for f(x) = 1/x/x2. The
statement for other degree two polynomials will then follow. (WHY?) For f(x) = 1.∫ 1

−1

1 dx = 2 =
1

3
[1 + 4 + 1] . (26)

For f(x) = x. ∫ 1

−1

x dx = 0 =
1

3
[−1 + 0 + 1] . (27)

For f(x) = x2. ∫ 1

−1

x2 dx =
2

3
=

1

3
[1 + 0 + 1] . (28)

Theorem 2: T

e error term for using the Simpson’s Rule to integrate f(x) on [a, b] with partition
[a, a+ h, a+ 2h = b]is

−1

90

(
b− a

5

)5

f (4)(η) (29)
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for some η ∈ (a, b) if f ∈ C4.

Example 6. If possible, find a formula∫ 1

−1

f(x) dx ≈ a1f(−1) + a2f(0) + a3f(1) (30)

that gives the correct value for f(x) = x, x2, x3. Does it correctly integrate the function
f(x) = 1, x4, x5?

Solution: Using (30) we obtain the following system of equations,
0 =

∫ 1

−1
x dx = −a1 + a3

2
3
=
∫ 1

−1
x2 dx = a1 + a3

0 =
∫ 1

−1
x3 dx = −a1 + a3

(31)

Solving this system we get, a1 = 1/3 and a3 = 1/3.
Next we check for f(x) = 1, x4, x5.

2 =

∫ 1

−1

1 dx
?
= 1/3 + a2 + 1/3. (32)

Now a2 is arbitrary, we can pick it to be 4/3.
For f(x) = x4, we have

2/5 =

∫ 1

−1

x4 dx ̸= 1/3 + 1/3. (33)

For f(x) = x5, we have

0 =

∫ 1

−1

x5 dx = −1/3 + 1/3. (34)

4.2 Quadrature Formulas

In general, the Quadrature Formulas are of the form∫ b

a

f(x) dx ≈
n∑

i=0

Aif(xi). (35)

Example 7. Determine the quadrature formula of the form (54) when the interval is [−2, 2]
and the nodes are -1, 0 and 1. With

Ai =

∫ b

a

Li(x) dx, Li(x) =
n∏

j=1,j ̸=i

x− xj

xi − xj

. (36)
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Solution: For this case a = −2, b = −2 and n = 2. The nodes are x0 = −1, x1 = 0,
x2 = 1. We list Li here,

L0 =
2∏

j=1,j ̸=0

x− xj

−1− xj

=
1

2
x(x− 1). (37)

L1 =
2∏

j=1,j ̸=1

x− xj

0− xj

= (x+ 1)(x− 1). (38)

L2 =
2∏

j=1,j ̸=2

x− xj

1− xj

= x
(x+ 1)

2
. (39)

Then A0 = 8/3, A1 = −4/3, A2 = 8/3. So the required quadrature formula is,∫ 2

−2

f(x) dx ≈ 8

3
f(−1)− 4

3
f(0) +

8

3
f(1) (40)

10



5 Feb 8, 2023

5.1 Gaussian Quadrature Formulas

In general, the Quadrature Formulas are of the form∫ b

a

f(x) dx ≈
n∑

i=0

Aif(xi). (41)

Example 8. Determine the quadrature formula of the form (54) when the interval is [−2, 2]
and the nodes are -1, 0 and 1. With

Ai =

∫ b

a

Li(x) dx, Li(x) =
n∏

j=1,j ̸=i

x− xj

xi − xj

. (42)

Solution: For this case a = −2, b = −2 and n = 2. The nodes are x0 = −1, x1 = 0,
x2 = 1. We list Li here,

L0 =
2∏

j=1,j ̸=0

x− xj

−1− xj

=
1

2
x(x− 1). (43)

L1 =
2∏

j=1,j ̸=1

x− xj

0− xj

= (x+ 1)(x− 1). (44)

L2 =
2∏

j=1,j ̸=2

x− xj

1− xj

= x
(x+ 1)

2
. (45)

Then A0 = 8/3, A1 = −4/3, A2 = 8/3. So the required quadrature formula is,∫ 2

−2

f(x) dx ≈ 8

3
f(−1)− 4

3
f(0) +

8

3
f(1) (46)

In (54) the points x0, x1, x2, · · · , xn are called the nodes. And the A0, A1, A2, · · · , An

are called the weights.

Example 9. Determine the Gaussian quadrature formula with three Gaussian nodes and
three weights for the integral

∫ 1

−1
f(x) dx.

5.2 Spline Functions

A spline function is a function that consists of polynomial pieces joined together with
certain smoothness conditions.

5.2.1 First Degree Spline
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Definition 3

A function S is called a spline of degree 1 if:

1. The domain of S is an interval [a, b].

2. S is continuous on [a, b].

3. There is a partitioning of the interval a = t0 < t1 < · · · < tn = b such that S is
a linear polynomial on each subinterval [ti, ti+1].

Example 10. Determine if

S(x) =


x, x ∈ [−1, 0]

1− x, x ∈ (−1, 1)

2x− 2, x ∈ [1, 2]

(47)

is a first degree spline function.

Solution: S(x) is obviously defined on an interval and on each subinterval it is a linear
function. However, it is discontinuous at x = 0. Thus this is not first degree spline
function.

5.2.2 Second Degree Splines

Definition 4

A function Q is called a spline of degree 2 (or called quadratic spline) if:

1. The domain of Q is an interval [a, b].

2. Q and Q’ are continuous on [a, b].

3. There are points ti (called knots) such that a = t0 < t1 < · · · < tn = b such
that Q is a linear polynomial on each subinterval [ti, ti+1].

Note that unlike the First degree spline, which only requires continuity of itself. A
second degree spline requires the continuity of itself and its first derivative.

Example 11. Check if

Q(x)


x2, x ∈ [10, 0]

−x2, x ∈ [0, 1]

1− 2x, x ∈ [1, 202]

(48)

is a quadratic spline.

Solution: It is piecewise quadratic, we can also check that Q and Q′ is continuous. Thus
it is a quadratic spline.
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5.2.3 Spline of degree k

Definition 5

A function S is called a spline of degree k (or called quadratic spline) if:

1. The domain of Q is an interval [a, b].

2. S, S ′, S ′′, · · · , S(k−1) are continuous on [a, b].

3. There are points ti (called knots of S) such that a = t0 < t1 < · · · < tn = b
such that S is a linear polynomial on each subinterval [ti, ti+1].

5.2.4 Natural cubic spline

Suppose we want are given some (t0, t1, · · · , tn, and y0, y1, · · · , yn where f(ti) = yi. We
wish to interpolate f with S(x) given by

S(x) =


S0(x), (t0 ≤ x ≤ t1)
...

Sn−1(x), (tn−1 ≤ x ≤ tn)

(49)

where each Si is a cubic polynomial. To interpolate it we have to solve both the interpolation
conditions and the continuity conditions. They are

S(ti) = yi, for i = 0, 2, · · · , n, (50)

lim
x→t−i

S(k)(ti) = lim
x→t+i

S(k)(ti), for i = 1, 2, · · · , n− 1. (51)

Notice that we have not specified the endpoint conditions. One way to do that is called the
natural cubic spline.

Definition 6: Natural cubic spline

The natural cubic spline is S(x) constructed as above, with the additional conditions
that

S ′′(t0) = S ′′(tn) = 0. (52)

Example 12. Construct the natural cubic spline with ti given by (−1, 0, 1) and yi given
by (1, 2,−1).

Solution: The interval here would be [−1, 1]. The function S(x) is given by

S(x) =

{
S0(x) = ax3 + bx2 + cx+ d, (−1 ≤ x ≤ 0)

Sn−1 = ex3 + fx2 + gx+ h), (tn−1 ≤ x ≤ tn)
(53)

after writing out continuity conditions and the interpolation conditions we see that a =
−1, b = −3, c = −1, d = 2, e = 1, f = −3, g = −1, and h = 2.
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6.1 Gaussian Quadrature Formulas

In general, the Quadrature Formulas are of the form∫ b

a

f(x) dx ≈
n∑

i=0

Aif(xi). (54)

One Quadrature Formula would be the Gaussian Quadrature Formulas/ Gauss-Legendre
quadrature formulas. These formulas are given by the following theorem.

Theorem 3: Gaussian Quadrature Theorem

Let q be a nontrivial polynomial of degree n+ 1 such that∫ b

a

xkq(x) dx = 0 (0 ≤ k ≤ n). (55)

Let x0, x1, · · · , xn be the zeros(roots) of q. Then the formula∫ b

a

f(x) dx ≈
n∑

i=0

Aif(xi) where Ai =

∫ b

a

Li dx (56)

is exact for all polynomials of degree at most 2n+ 1.

To summarize we have:

Weights Ai given by integration of Lagrange interpolation formula

+ nodes xi given by zeros of q = Gaussian Quadrature formulas. (57)

Example 13. Determine the Gaussian quadrature formula with three Gaussian nodes and
three weights for the integral

∫ 1

−1
f(x) dx.

Solution. Let q be an arbitrary polynomial of degree 3, then q(x) = c0+c1x+c2x
2+c3x

3.
From Theorem (3), we see that q must satisfies,∫ 1

−1

q(x) dx =

∫ 1

−1

xq(x) dx =

∫ 1

−1

x2q(x) dx = 0. (58)

Note that we only have three equations for four unknowns! Thus we must choose a variable
on our own. In fact, we can pick

c0 = c2 = 0. (59)

Note that this solves
∫ 1

−1
q(x) dx =

∫ 1

−1
x2q(x) dx = 0. Then we use this to find c1 and c3,

we have ∫ 1

−1

xq(x) dx =

∫ 1

−1

x(c1x+ c3x
3) dx = 0. (60)

We can pick c1 = −3 and c3 = 5. Hence,

q(x) = 5x3 − 3x.
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The roots are −
√

3/5, 0, and
√

3/5. To obtain Ai, we can either calculate it directly using
(56). Or we can solve a system with Ai as unknowns.

6.2 Numerical methods for Initial-Value Problem

In this section, we consider solving Ordinary Differential Equations (ODE) numerically.
A general ODE is given by, 

dx(t)

dt
= x′(t) = f(t, x(t))

x(a) is given
(61)

The problem is called an initial value because a is the initial time of x. Usually, a is denoted
by t0. Solving ODE is closely related to quadrature rules. WHY?

6.2.1 Taylor Series Method

Recall the Taylor series expansion of x about t is

x(t+ h) =
∞∑
i=0

hi

i!
x(i)(t) (62)

Example 14. Use the Taylor series method of degree 4 to solve the initial value problem
dx

dt
= x4

x(0) = 1
(63)

Solution. We apply the Taylor series expansion directly, to obtain

x(h) = 1 +
h

1!
4x3 +

h2

2!
4× 3× x2 +

h3

3!
4× 3× 2× x+

h4

4!
4× 3× 2.

Example 15. (Problem 15 in 10.1 in the book.) 15. Explain how to use the ODE method
that is based on the Trapezoid Rule:

x̂(t+ h) = x(t) + hf(t, x(t)),

x(t+ h) = x(t) +
h

2
[f(t, x(t)) + f(t+ h, x̂(t+ h))].

(64)

This is called the improved Euler’s method or Heun’s method.

Solution. We can draw a picture to see how this work. But the idea is that we first do an
approximation at x(t+ h) with the simple Euler’s method. Then use this new information
to improve the estimation x(t+ h) using the Trapezoid Rule.
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7.1 Runge-Kutta Method

The RK method imitates the Taylor series method without requiring analytic differentiation
of the original differential equation. In the Taylor series method, we need to compute f ′, f ′′,
etc. You may know very well the computation of derivative, but let’s not assume everyone
does! We hope to design a method that even a kid can use just by imputing numbers on
the keypad.

The RK method of order 2 is given here.

Definition 7: Runge-Kutta method of order 2

Define
K1 = hf(t, x), K2 := hf(t+ h, x+K1). (65)

The second-order Runge-Kutta method is given by

x(t+ h) = x(t) +
1

2
(K1 +K2)

= x(t) +
h

2
f(t, x) +

h

2
f(t+ h, x+ hf(t, x)).

(66)

Example 16. Solve the differential equation
dx

dt
= −tx2

x(0) = 2
(67)

with h = 0.2 using one step of RK method of order 2.

Solution: We can compute the following

K1 = 0.2×−1× 0× 22,

K2 = 0.2×−1× (0 + 0.2)× (2 + 0)2,

x(0.2) = x(0 + 0.2) = 2 +
1

2
(K1 +K2).

(68)

7.2 Matrix Factorizations

We will use bold font to denote matrices and vectors, i.e., A is a matrix and b is a vector.
We will study the lower triangular matrix L and the upper triangular matrix U. An LU

decomposition of a matrix A is the existence of L,U such that A = LU. (Is this always
possible?) We can use Gaussian Elimination to find the LU decomposition. Before doing
an example, let’s explain the idea behind this. As we know row operations in Gaussian
Elimination are the same as multiplying the so called elementary matrices on the left. The
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correspondence is, for a 3× 3 matrix,

Row-switching transformations :

1 0 0
0 0 1
0 1 0

, What does this matrix do? (69)

Row-multiplying transformations :

1 0 0
0 3 0
0 0 1

, What does this matrix do? (70)

Row-multiplying transformations :

1 0 0
0 1 0
0 1 1

, What does this matrix do? (71)

Note that Elementary matrices for reducing a matrix into a upper triangular
form are lower triangular matrices! That means during the Gaussian Elimination we
would have done something like this

M1M2 · · ·MkA = U

where Mi are all lower triangular and U is upper triangular (that’s what we should get after
doing Gaussian Elimination). Then we can easily recover the LU factorization. (WHY?)

Example 17. Find the LU factorization for(
3 2
2 1

)
(72)

using Gaussian Elimination.

Solution: (
3 2
2 1

)
=

(
1 0
2
3

1

)(
3 3
0 −1

)
(73)
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8.1 Matrix Multiplication

Previously we learned that we can use three types of row operations to transform a matrix
into its upper triangular. We want to find out a way to write any elementary matrices. We
want to find a way to easily write any elementary matrices.

Suppose we are given a matrix A. We just need to focus on one column of A. (WHY?).
Let the first column of A be a1

a2
a3

. (74)

Suppose we have an arbitrary matrix M = (m1|m2|m1), where is mi is the column i of
M. Then (

m1 m2 m1

)a1
a2
a3

 = m1a1 +m2a2 +m3a3 =

·
·
·

. (75)

In this way, it is easy to write out all elementary matrices.
Keep the matrix A the same (Idenity):

M =

1 0 0
0 1 0
0 0 1

. (76)

Multiply row 2 of A by k:

M =

1 0 0
0 2 0
0 0 1

. (77)

Add k times row 2 to row 3:

M =

1 0 0
0 1 0
0 k 1

. (78)

All elementary matrices that are used to transform A to upper triangular form are lower
triangular. For the first two cases, it is obvious. For the last case, note that we will have
no need to add row i to row j when j > i.

We can use the same method for a 4 × 4 matrix. Now let A be a 4 × 4 matrix. Keep
the matrix A the same (Identity):

M =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

. (79)

Multiply row 4 of A by k:

M =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 k

. (80)
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Add k times row 1 to row 3:

M =


1 0 0 0
0 1 0 0
k 0 1 0
0 0 0 1

. (81)

Add k times row 3 to row 4:

M =


1 0 0 0
0 1 0 0
1 0 1 0
0 0 k 1

. (82)

8.2 Inverse of elementary matrices

The inverse of elementary matrices is the inverse process of the row operation. For example,

1. The inverse of Multiplying k to row i is dividing row i by k.

2. Adding k row i to row j is adding −k row i to row j.

8.3 Example of LU

Example 18. Find the QR factorization of(
3 2
−4 1

)
. (83)

Solution:
Step 1: Multiply on left, (

1 0
4
3

1

)
︸ ︷︷ ︸

L−1

(
3 2
−4 1

)
=

(
3 2
0 11

3

)
︸ ︷︷ ︸

U

. (84)

Step 2: The inverse of adding 4
3
of row 2 to row 1 is adding −4

3
of row 2 to row 1. Thus

L =

(
1 0
−4

3
1

)
. (85)

Step 3: Thus we have found the LU factorization,(
3 2
−4 1

)
=

(
1 0
−4

3
1

)(
3 2
0 11

3

)
. (86)
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Example 19. Find the LU factorization of 5 6 4
−4 1 5
8 1 5

. (87)

Solution:
Step 1:  1 0 0

4
5

1 0
−8

5
0 1


︸ ︷︷ ︸

L1

 5 6 4
−4 1 5
8 1 5

 =

5 6 4
0 29

5
41
5

0 −43
5

−7
5

 (88)

Step 2: 1 0 0
0 1 0
0 43

5
5
29

1


︸ ︷︷ ︸

L2

5 6 4
0 29

5
41
5

0 −43
5

−7
5

 =

5 6 4
0 29

5
41
5

0 0 312
29


︸ ︷︷ ︸

U

(89)

Step 3: We need to find L−1
1 and L−1

2 . Using the same reasoning, we have

L−1
1 =

 1 0 0
−4

5
1 0

8
5

0 1

, L−1
2 =

1 0 0
0 1 0
0 −43

5
5
29

1

 (90)

Step 4: Thus the LU factorization is 1 0 0
−4

5
1 0

8
5

0 1

1 0 0
0 1 0
0 −43

5
5
29

1

5 6 4
0 29

5
41
5

0 0 312
29


=

 1 0 0
−4
5

1 0
8
5

−43
29

1

5 6 4
0 29

5
41
5

0 0 312
29


=

 5 6 4
−4 1 5
8 1 5

.

(91)
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9.1 Singular Value Decomposition

We write a SVD as A = UΣVT . Steps to find the SVD are as follows:

Step 1: Given Am×n, m ≥ n. Compute ATA. Find the eigenvalues λi and the orthonor-
mal eigenvectors vi of A

TA.

Step 2: Compute σi =
√
λi. Then Σ is given by a square matrix with diagonal element

σ1 > σ2 > · · ·σn. Next we add some zeros rows if m > n to make the matrix multiplication
well-defined.

Step 3: For those non-zero σi, compute ui = Avi
σi

. And then add some orthonormal
vectors to make U a square matrix.

Step 4: We form the SVD as:

A =

u1 u2 · · · um




σ1

σn

0 0

0 0


v1 v2 · · · vm

T

(92)

Example 20. Compute the SVD for

A =

1 2
2 2
2 1

.

Solution:
Step 1: First compute ATA. We get

ATA =

(
9 8
9 9

)
.

The eigenvalues can be found by solving

det(λI−ATA) = 0.

We will get λ1 = 17 and λ2 = 1. Thus σ1 =
√
17, σ2 = 1. The corresponding eigenvector is

v1 =
1√
2

(
1
1

)
, v2 =

1√
2

(
1
−1

)
.

Step 2: Hence

V =

(
1√
2

1√
2

1√
2

− 1√
2

)
.
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Step 3: We also have

u1 =
1√
17

1√
2

1 2
2 2
2 1

(1
1

)
and

u2 =
1√
2

1 2
2 2
2 1

( 1
−1

)
.

We can pick

u3 =


2√
17

−3√
17
2√
17

( 1
−1

)
.

Hence

A =


3√
34

−1√
2

2√
17

4√
34

0 −3√
17

3√
34

1√
2

2√
17


√

17 0
0 1
0 0

( 1√
2

1√
2

1√
2

− 1√
2

)T

.

9.2 Power Method

If you keeping apply a matrix A to some vector x then x will converges to the eigenvector
that correspond to a largest eigenvalue! In particular, keep applying B := (A− cI)−1 to x,
then x will converge to the eigenvector that correspond to the eigenvalue closest to c.

Example 21. Let

A =

 4 −5 1
−5 3 0
1 0 −3

.

Carry out the some iterations of the power method to find the eigenvalue that is closet to
7. (The eigenvalue closest to 7 should be around 8.57236.)

Solution: We need to apply B := (A−7I)−1 to a random vector, let’s use x0 = (1, 1, 1)T .
Notice that we are actually finding x1 such that,

Bx0 = x1. (93)

That is equivalent to find x1 such that,

(A− 7I)x1 = x0. (94)

(WHY?). Then in the next step we will find x2 such that

Bx1 = x2. (95)

Again this is equivalent to finding x2 such that

(A− 7I)x2 = x1. (96)
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This can be generalize to any step.
Let’s do one iteration to test out the idea. First,

A− 7I =

−3 −5 1
−5 −4 0
1 0 −10

.

To apply B to x0 is the same as find x1 such that−3 −5 1
−5 −4 0
1 0 −10

x1 = x0 (97)

This can be solve by Gaussian elimination of any other method you like. After solving (97),
we have

x1 = (−3/67,−13/67,−7/67). (98)

Now we can find the first approximation of the eigenvalue, we compute

λ1 =
x1(1)

x0(1)
=

−3

67
. (99)
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